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Figure 1. Structure of PlantDHS database. (A) Navigation bar of PlantDHS home page. (B) Quick search box for finding DHSs for a region or gene of
interest. (C) Species-specific search engine (Genome Tab). (D) DHS search results and links to JBrowse pages (red box). This page shows the gene name,
reference genome, gene name synonyms, if there are DHSs associated with the gene or region of interest, and a short description of the gene. (E) Details of
region and/or gene of interest. Top panel represents the table of DHSs in the intersected region, and more specifically the coordinates of DHSs. The ‘View’
links take the user to the histone modification and RNA-seq information for each DHS, which is displayed in Figure 2. Bottom panel is the JBrowser view
of the region of interest. The purple box highlights a DHS (blue arrow), a SEP3-binding site, a AP1-binding site, and two positioned nucleosomes that
present in leaf tissue but miss in flower tissue (blue double arrows), which are all located upstream of the SUPERMAN gene (AT3G23130).
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Figure 2. Histone modification, RNA-seq and DHS score information page. (A) Mean and max DHS scores in different tissues and developmental stages
associated with a single DHS. (B) Normalized histone modification scores within and around (flanking) the DHS. (C) Expression levels of SUPERMAN
(AT3G23130) and two nearby genes (within 10 kb of DHS) in flower and leaf tissues. All three genes are not expressed in leaf tissue.

orate the TF binding site data and reveal the complex regu-
lation for the SUPERMAN gene.

DATA SOURCE

TAIR10 (https://www.arabidopsis.org) (16), TIGR7 (http:
//rice.plantbiology.msu.edu) (17) and MIPS1.2 (http://www.
brachypodium.org) (18) were used as the reference genomes
of A. thaliana, rice and B. distachyon, respectively. We in-
cluded a total of seven DHS libraries: Arabidopsis (Col-0)
leaf, Arabidopsis (Col-0) flower, Arabidopsis (Col-0) ddm1
mutant (deficient in DNA methylation1) leaf, ddm1 mutant
flower (6), rice (Nipponbare) seedling tissue, rice (Nippon-
bare) callus (7) and B. distachyon (BD21) seedling tissue.
RNA-seq libraries included: Arabidopsis leaf, Arabidop-
sis flower (6), rice seedlings, rice callus (19) and B. dis-
tachyon leaf (20). Histone modification data sets contain:
H3K27me3, H3K27ac and H3K4me1 from Arabidopsis leaf
and flower tissues; and H3K36me3, H3K4me3, H3K9me2,
H4K12ac, H3K9ac, H3K4me2 and H3K27me3 from rice
leaf tissue (7,21). Histone modification was calculated in
two distinct regions: (i) ±300 bp flanking the full DHS and
(ii) exclusively within the DHS. The nucleosome position-
ing data includes: rice leaf, Arabidopsis leaf and Arabidop-
sis flower (22,23). Arabidopsis transcription factor data sets:
AGL-15 (24), AP1 (25), AP3 (26), BES1 (27), EIN3 (28),
ERF115 (29), FHY3 (30), FLC (31), FLM (32), FUS3 (33),
GL1 (34), GL3 (34), GTL1 (35), LFY (36), PI (26), PIF3
(37), PIF4 (38), PIF5 (39), PRR5 (40), PRR7 (41), SEP3
(42), SMZ (43), SOC1 (44), TOC1 (45) and WUS (46).

All Arabidopsis transcription factor binding site informa-
tion was downloaded from http://bioinformatics.psb.ugent.
be/cig data/RegNet/ (47).

DISCUSSION AND FUTURE DIRECTIONS

Identification of CREs in plants has been mainly depen-
dent on bioinformatic and computational predictions (48).
Several algorithms and bioinformatic tools have been devel-
oped to identify CREs in plants. Most of these tools were
established either exclusively based on analysis of DNA
sequences from the upstream regions of genes (49,50), or
based on identification of co-expressed genes in different tis-
sues or/and under the same biotic or abiotic stress, followed
by sequence/motif analysis of the presumed upstream reg-
ulatory regions of the co-expressed genes (48). These tools
and the established databases have been valuable to the
plant research community. However, since these prediction
tools have mainly focused on promoter regions, the vast
majority of other types of CREs, including enhancers, are
missed in these predictions.

DNase I hypersensitivity is a universal mark for all ac-
tive CREs (51). For example, more than 90% of the SEP3-
binding and AP1-binding sites detected by ChIP-seq were
covered by DHSs (6). Thus, DHSs provide corroborative in-
formation of TF-binding sites predicted based on the clas-
sical ChIP-seq method. PlantDHS provides a platform that
allows predicting of all potential CREs associated with spe-
cific plant genes. The position of the promoter of a plant
gene can be readily predicted based on various tools and
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databases developed by the plant research community. By
contrast, plant enhancers have proved to be difficult to iden-
tify, which is due to the fact that enhancers can be located
at various positions relative to a specific gene. DHSs located
outside of the promoter regions are putative enhancers. We
recently examined the function of several intergenic DHSs
in A. thaliana using the �-glucuronidase gene reporter. En-
hancer function was found to be associated with of more
than 70% of these candidates (52). This result confirmed the
power of mapping CREs using DHSs.

We plan to maintain and improve the PlantDHS by
adding additional DHS data sets, including those from ad-
ditional plant species and from model plant species grown
under various stress conditions. Epigenomic data sets will
also be added in the database. We are currently developing
a genome-wide enhancer map in A. thaliana based largely
on the DHS information (52). The enhancer information
will be integrated into PlantDHS, which will be one of our
near future goals.
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